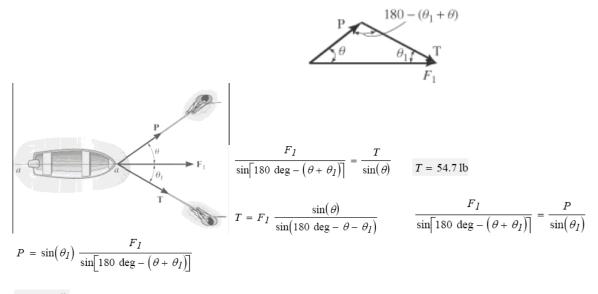
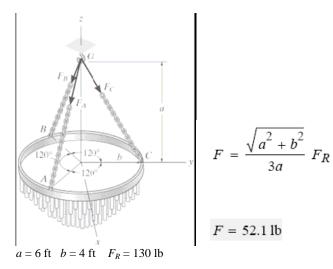

Determine the magnitude of the resultant force $\mathbf{F}_{\mathbf{R}} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ and its direction, measured counterclockwise from the positive *x*-axis.

Given: $F_1 = 600 \text{ N}$ $F_2 = 800 \text{ N}$ $F_3 = 450 \text{ N}$ $\alpha = 45 \text{ deg m } \beta = 60 \text{ deg}$ $\gamma = 75 \text{ deg}$

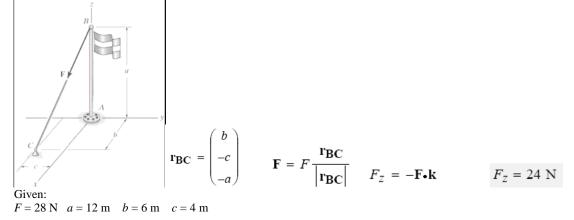
Problem 2


Resolve the force F_2 into components acting along the *u* and *v* axes and determine the magnitudes of the components.

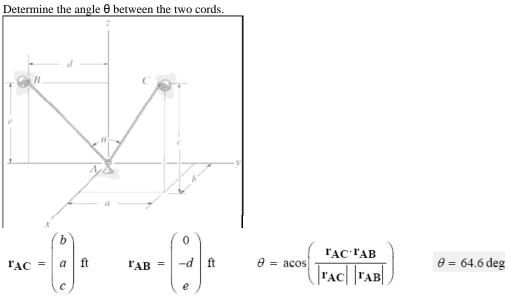
$F_1 = 300 \text{ N}$ $F_2 = 500 \text{ N}$ $\alpha = 30 \text{ deg}$ $\beta = 45 \text{ deg}$ $\gamma = 70 \text{ deg}$


Problem 3

The boat is to be pulled onto the shore using two ropes. Determine the magnitudes of forces T and P acting in each rope in order to develop a resultant force \mathbf{F}_1 , directed along the keel axis *aa* as shown.

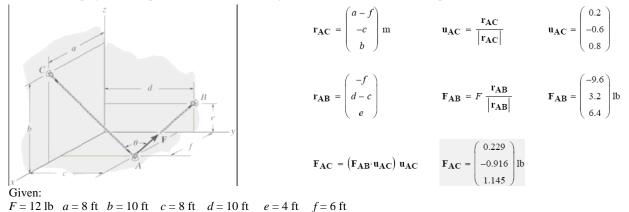

P = 42.6 lbGiven: $\theta = 40 \text{ deg}$ $\theta_1 = 30 \text{ deg}$ $F_1 = 80 \text{ lb}$

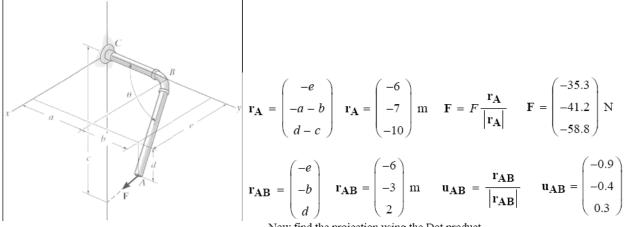
The chandelier is supported by three chains, which are concurrent at point *O*. If the resultant force at *O* has magnitude F_R and is directed along the negative *z*-axis, determine the force in each chain assuming $F_A = F_B = F_C = F$.



Problem 5

Cable BC exerts force F on the top of the flagpole. Determine the projection of this force along the z-axis of the pole.

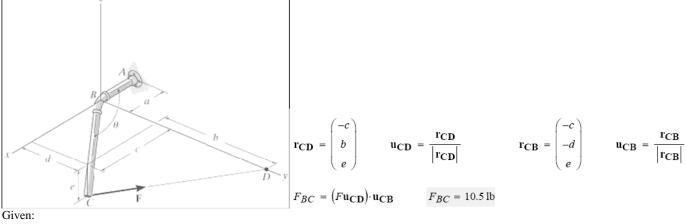

Problem 6


Given:

a = 3 m b = 2 m c = 6 m d = 3 m e = 4 m

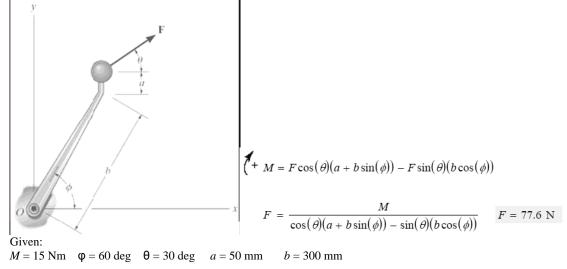
Determine the projected component of the force **F** acting in the direction of cable *AC*. Express the result as a Cartesian vector.

Determine the projected component of the force \mathbf{F} acting along the axis AB of the pipe.

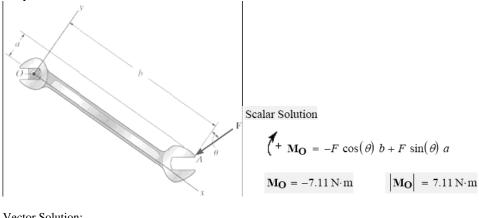

Now find the projection using the Dot product.

$$F_{AB} = \mathbf{F} \cdot \mathbf{u}_{AB}$$
 $F_{AB} = 31.1 \text{ N}$

Given: F = 80 N a = 4 m b = 3 m c = 12 m d = 2 m e = 6 m


Problem 9

Determine the magnitude of the projected component of the force \mathbf{F} acting along the axis BC of the pipe.

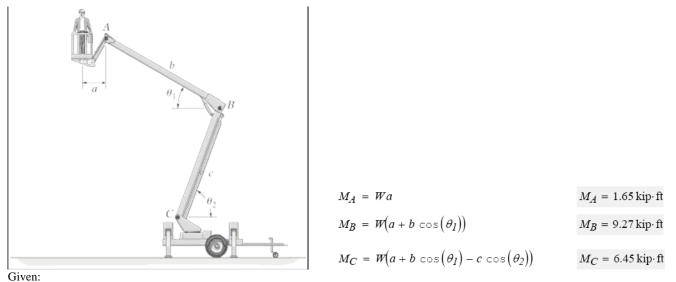


Determine the magnitude of the force F that should be applied at the end of the lever such that this force creates a clockwise moment *M about* point *O*.

Problem 11

A force F is applied to the wrench. Determine the moment of this force about point O. Solve the problem using both a scalar analysis and a vector analysis.

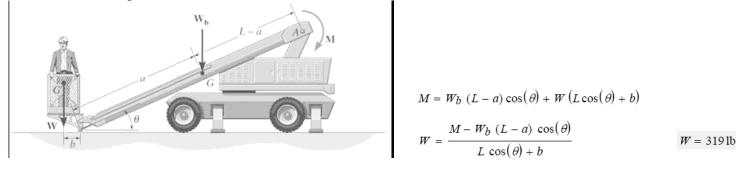
Vector Solution:


$$\mathbf{M}_{\mathbf{O}} = \begin{pmatrix} b \\ a \\ 0 \end{pmatrix} \times \begin{pmatrix} -F \sin(\theta) \\ -F \cos(\theta) \\ 0 \end{pmatrix} \qquad \mathbf{M}_{\mathbf{O}} = \begin{pmatrix} 0 \\ 0 \\ -7.11 \end{pmatrix} \mathbf{N} \cdot \mathbf{m} \qquad \left| \mathbf{M}_{\mathbf{O}} \right| = 7.107 \, \mathbf{N} \cdot \mathbf{m}$$

Given: F = 40 N $\theta = 20 \text{ deg}$ a = 30 mm b = 200 mm

Problem 12

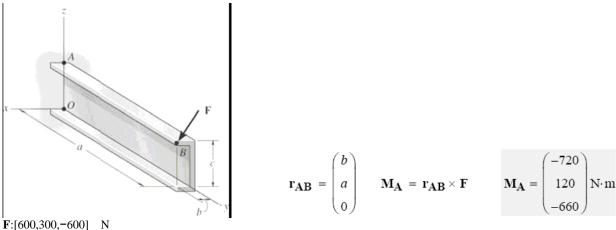
Determine the moment of each force about the bolt located at A. $FB = 40 \text{ lb } a = 2.5 \text{ ft } \alpha = 20 \text{ deg } \gamma = 30 \text{ deg}$ $FC = 50 \text{ lb } b = 0.75 \text{ ft } \beta = 25 \text{ deg}$ Given: $(A + M_B = F_B \cos(\beta)a$ $(A + M_C = F_C \cos(\gamma)(a + b)$ $M_B = 90.6 \text{ lb} \cdot \text{ft}$ $M_C = 141 \text{ lb} \cdot \text{ft}$


The Snorkel Co. produces the articulating boom platform that can support weight *W*. If the boom is in the position shown, determine the moment of this force about points *A*, *B*, and *C*.

a = 3 ft b = 16 ft c = 15 ft $\theta_1 = 30$ deg $\theta_2 = 70$ deg W = 550 lb

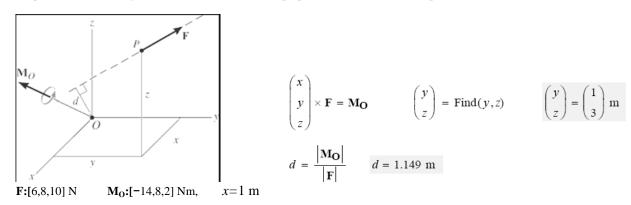
Problem 14

The boom has length L_i , weight W_b , and mass center at G. If the maximum moment that can be developed by the motor at A is M, determine the maximum load W, having a mass center at G', that can be lifted.

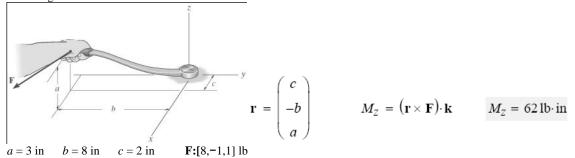

Given:

Problem 15

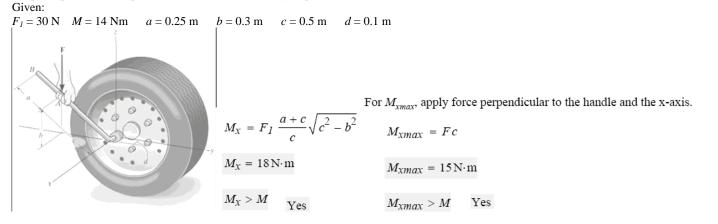
L = 30 ft $W_b = 800 \text{ lb}$ a = 14 ft b = 2 ft $\theta = 30 \text{ deg}$


The force **F** acts at the end of the beam. Determine the moment of the force about point A. a) By vector method, b) By scalar method.

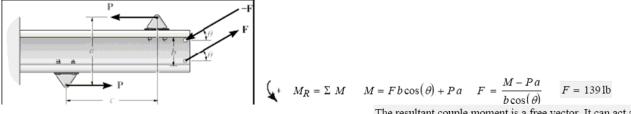
 $M = 20 \times 10^3$ lb ft


a = 1.2 m b = 0.2 m c = 0.4 m

The force **F** creates a moment about point *O* of \mathbf{M}_0 . If the force passes through a point having the given *x* coordinate, determine the *y* and *z* coordinates of the point. Also, realizing that $M_0 = Fd$, determine the perpendicular distance *d* from point *O* to the line of action of **F**.

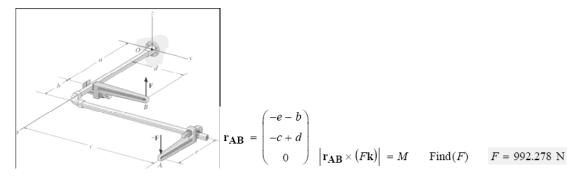

Problem 17

The force \mathbf{F} is applied to the handle of the box wrench. Determine the component of the moment of this force about the *z* axis which is effective in loosening the bolt.


Problem 18

The lug nut on the wheel of the automobile is to be removed using the wrench and applying the vertical force \mathbf{F} . Assume that the cheater pipe AB is slipped over the handle of the wrench and the \mathbf{F} force can be applied at any point and in any direction on the assembly. Determine if this force is adequate, provided a torque M about the *x*-axis is initially required to turn the nut.

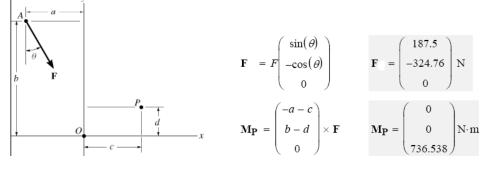
Problem 19


Two couples act on the beam. Determine the magnitude of \mathbf{F} so that the resultant couple moment is M counterclockwise. Where on the beam does the resultant couple moment act?

M = 450 lb ft P = 200 lb a = 1.5 ft b = 1.25 ft c = 2 ft $\theta = 30 \text{ deg}$

The resultant couple moment is a free vector. It can act at any point on the beam.

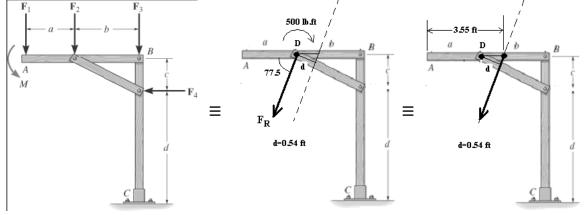
If the couple moment acting on the pipe has magnitude *M*, determine the magnitude *F* of the vertical force applied to each wrench.



Given:

M = 400 Nm a = 300 mm b = 150 mm c = 400 mm d = 200 mm e = 200 mm

Problem 21


Replace the force at *A* by an equivalent force and couple moment at point *P*.

Given: F = 375 N a = 2 m b = 4 m c = 2 m d = 1 m $\theta = 30$ deg

Problem 22

Replace the loading on the frame by a single resultant force. Specify where its line of action intersects member AB, measured from A.

Given: M = 600 lb ft *F*₁ = 300 lb, *F*₂ = 200 lb, *F*₃ = 400 lb, *F*₄ = 200 lb a = 3 ft, b = 4 ft, c = 2 ft, d = 7 ft *Solution: F*_{Rx} = -*F*₄ *F*_{Ry} = -*F*₁ - *F*₂ - *F*₃ *F*_{Ry} = -900 lb *F* = $\sqrt{F_{Rx}^2 + F_{Ry}^2}$ *F*_R = 922 lb $\theta = \operatorname{atan}\left(\frac{F_{Ry}}{F_{Rx}}\right)$ $\theta = 77.5 \text{ deg}$

 $\Sigma M_D = (300)(3) - (400)(4) - (200)(2) + 600 = -500 \text{ Lb.ft}$ $\Sigma M_D = (F_R)(d) d = 0.54 \text{ ft}$