Problem 1
Determine the magnitude of the resultant force $\mathbf{F}_{\mathbf{R}}=\mathbf{F}_{\mathbf{1}}+\mathbf{F}_{\mathbf{2}}+\mathbf{F}_{\mathbf{3}}$ and its direction, measured counterclockwise from the positive \boldsymbol{x}-axis.

$$
\begin{aligned}
\mathbf{F}_{\mathbf{R x}}=\mathbf{F}_{1 \mathrm{x}}+\mathbf{F}_{2 \mathrm{x}}+\mathbf{F}_{3 \mathrm{x}}=-0.703 \mathbf{k N}, \quad \mathbf{F}_{\mathbf{R y}}=\mathbf{F}_{1 \mathrm{y}}+\mathbf{F}_{2 \mathrm{y}}+\mathbf{F}_{3 \mathrm{y}}=0.708 \mathrm{kN} \\
\mathbf{F}_{\mathbf{R}}=\mathbf{0 . 9 9 8} \mathbf{~ k N} \quad \theta=134.8^{\circ}
\end{aligned}
$$

Given:

$F_{1}=600 \mathrm{~N} \quad F_{2}=800 \mathrm{~N} \quad F_{3}=450 \mathrm{~N}$
$\alpha=45 \operatorname{deg} m \beta=60 \operatorname{deg} \quad Y=75 \mathrm{deg}$

Problem 2
Resolve the force \mathbf{F}_{2} into components acting along the u and v axes and determine the magnitudes of the components.

Given:
$F_{1}=300 \mathrm{~N} \quad F_{2}=500 \mathrm{~N} \quad \alpha=30 \mathrm{deg} \quad \beta=45 \mathrm{deg} \quad Y=70 \mathrm{deg}$

Problem 3

The boat is to be pulled onto the shore using two ropes. Determine the magnitudes of forces T and \mathbf{P} acting in each rope in order to develop a resultant force \mathbf{F}_{1}, directed along the keel axis $a a$ as shown.

$P=\sin \left(\theta_{1}\right) \frac{F_{1}}{\sin \left[180 \operatorname{deg}-\left(\theta+\theta_{l}\right)\right]}$
$P=42.6 \mathrm{lb}$
Given:
$\theta=40 \mathrm{deg} \quad \theta_{1}=30 \mathrm{deg} \quad F_{1}=80 \mathrm{lb}$

Problem 4

The chandelier is supported by three chains, which are concurrent at point O. If the resultant force at O has magnitude F_{R} and is directed along the negative z-axis, determine the force in each chain assuming $F_{A}=F_{B}=F_{C}=F$.

$a=6 \mathrm{ft} \quad b=4 \mathrm{ft} \quad F_{R}=130 \mathrm{lb}$

Problem 5

Cable $B C$ exerts force \mathbf{F} on the top of the flagpole. Determine the projection of this force along the z-axis of the pole.

Given:
$F=28 \mathrm{~N} \quad a=12 \mathrm{~m} \quad b=6 \mathrm{~m} \quad c=4 \mathrm{~m}$

Problem 6
Determine the angle θ between the two cords.

$\mathbf{r}_{\mathbf{A C}}=\left(\begin{array}{c}b \\ a \\ c\end{array}\right) \mathrm{ft} \quad \mathbf{r}_{\mathbf{A B}}=\left(\begin{array}{c}0 \\ -d \\ e\end{array}\right) \mathrm{ft} \quad \theta=\operatorname{acos}\left(\frac{\mathbf{r}_{\mathbf{A C}} \cdot \mathbf{r}_{\mathbf{A B}}}{\left|\mathbf{r}_{\mathbf{A C}}\right|\left|\mathbf{r}_{\mathbf{A B}}\right|}\right) \quad \theta=64.6 \mathrm{deg}$
Given:
$a=3 \mathrm{~m} \quad b=2 \mathrm{~m} \quad c=6 \mathrm{~m} \quad d=3 \mathrm{~m} \quad e=4 \mathrm{~m}$

Problem 7

Determine the projected component of the force \mathbf{F} acting in the direction of cable AC. Express the result as a Cartesian vector.
$\mathbf{r}_{\mathbf{A C}}=\left(\begin{array}{c}a-f \\ -c \\ b\end{array}\right) \mathrm{m}$
$\mathbf{u}_{\mathbf{A C}}=\frac{\mathbf{r}_{\mathbf{A C}}}{\left|\mathbf{r}_{\mathbf{A C}}\right|}$
$\mathbf{u}_{\mathbf{A C}}=\left(\begin{array}{c}0.2 \\ -0.6 \\ 0.8\end{array}\right)$
$\mathbf{r}_{\mathbf{A B}}=\left(\begin{array}{c}-f \\ d-c \\ e\end{array}\right)$
$\mathbf{F}_{\mathbf{A B}}=F \frac{\mathbf{r}_{\mathrm{AB}}}{\left|\mathbf{r}_{\mathbf{A B}}\right|}$
$\mathbf{F}_{\mathbf{A B}}=\left(\begin{array}{c}-9.6 \\ 3.2 \\ 6.4\end{array}\right) \mathrm{lb}$
$\mathbf{F}_{\mathbf{A C}}=\left(\mathbf{F}_{\mathbf{A B}} \cdot \mathbf{u}_{\mathbf{A C}}\right) \mathbf{u}_{\mathbf{A C}} \quad \mathbf{F}_{\mathbf{A C}}=\left(\begin{array}{c}0.229 \\ -0.916 \\ 1.145\end{array}\right) \mathbf{l b}$
Given:
$F=12 \mathrm{lb} \quad a=8 \mathrm{ft} \quad b=10 \mathrm{ft} \quad c=8 \mathrm{ft} \quad d=10 \mathrm{ft} \quad e=4 \mathrm{ft} \quad f=6 \mathrm{ft}$

Problem 8
Determine the projected component of the force \mathbf{F} acting along the axis $A B$ of the pipe.

$$
\mathbf{r}_{\mathbf{A}}=\left(\begin{array}{c}
-e \\
-a-b \\
d-c
\end{array}\right) \quad \mathbf{r}_{\mathbf{A}}=\left(\begin{array}{c}
-6 \\
-7 \\
-10
\end{array}\right) \mathrm{m} \quad \mathbf{F}=F \frac{\mathbf{r}_{\mathbf{A}}}{\left|\mathbf{r}_{\mathbf{A}}\right|} \quad \mathbf{F}=\left(\begin{array}{c}
-35.3 \\
-41.2 \\
-58.8
\end{array}\right) \mathrm{N}
$$

$$
\mathbf{r}_{\mathbf{A B}}=\left(\begin{array}{c}
-e \\
-b \\
d
\end{array}\right) \quad \mathbf{r}_{\mathbf{A B}}=\left(\begin{array}{c}
-6 \\
-3 \\
2
\end{array}\right) \mathrm{m} \quad \mathbf{u}_{\mathbf{A B}}=\frac{\mathbf{r}_{\mathbf{A B}}}{\left|\mathbf{r}_{\mathbf{A B}}\right|} \quad \mathbf{u}_{\mathbf{A B}}=\left(\begin{array}{c}
-0.9 \\
-0.4 \\
0.3
\end{array}\right)
$$

Now find the projection using the Dot product.

$$
F_{A B}=\mathbf{F} \cdot \mathbf{u}_{\mathbf{A B}} \quad F_{A B}=31.1 \mathrm{~N}
$$

Given:
$F=80 \mathrm{~N} \quad a=4 \mathrm{~m} \quad b=3 \mathrm{~m} \quad c=12 \mathrm{~m} \quad d=2 \mathrm{~m} \quad e=6 \mathrm{~m}$

Problem 9

Determine the magnitude of the projected component of the force \mathbf{F} acting along the axis $B C$ of the pipe.

Given:
$F=100 \mathrm{lb} \quad a=3 \mathrm{ft} \quad b=8 \mathrm{ft} \quad c=6 \mathrm{ft} \quad d=4 \mathrm{ft} \quad e=2 \mathrm{ft}$

Problem 10
Determine the magnitude of the force \mathbf{F} that should be applied at the end of the lever such that this force creates a clockwise moment M about point O.

Given:
$M=15 \mathrm{Nm} \quad \varphi=60 \mathrm{deg} \quad \theta=30 \mathrm{deg} \quad a=50 \mathrm{~mm} \quad b=300 \mathrm{~mm}$

Problem 11

A force \mathbf{F} is applied to the wrench. Determine the moment of this force about point O. Solve the problem using both a scalar analysis and a vector analysis.

Vector Solution:
$\mathbf{M}_{\mathbf{O}}=\left(\begin{array}{l}b \\ a \\ 0\end{array}\right) \times\left(\begin{array}{c}-F \sin (\theta) \\ -F \cos (\theta) \\ 0\end{array}\right) \quad \mathbf{M}_{\mathbf{O}}=\left(\begin{array}{c}0 \\ 0 \\ -7.11\end{array}\right) \mathrm{N} \cdot \mathrm{m} \quad\left|\mathbf{M}_{\mathbf{O}}\right|=7.107 \mathrm{~N} \cdot \mathrm{~m}$
Given:
$F=40 \mathrm{~N} \quad \theta=20 \mathrm{deg} \quad a=30 \mathrm{~mm} \quad b=200 \mathrm{~mm}$

Problem 12

Determine the moment of each force about the bolt located at A.

Problem 13
The Snorkel Co. produces the articulating boom platform that can support weight W. If the boom is in the position shown, determine the moment of this force about points A, B, and C.

Given:
$a=3 \mathrm{ft} b=16 \mathrm{ft} \quad c=15 \mathrm{ft} \quad \theta_{1}=30 \mathrm{deg} \quad \theta_{2}=70 \mathrm{deg} \quad W=550 \mathrm{lb}$

Problem 14
The boom has length L; weight W_{b}, and mass center at G. If the maximum moment that can be developed by the motor at A is M, determine the maximum load W, having a mass center at G^{\prime}, that can be lifted.

$$
\begin{aligned}
M & =W_{b}(L-a) \cos (\theta)+W(L \cos (\theta)+b) \\
W & =\frac{M-W_{b}(L-a) \cos (\theta)}{L \cos (\theta)+b}
\end{aligned} \quad W=319 \mathrm{lb}
$$

Given:
$L=30 \mathrm{ft} \quad W_{b}=800 \mathrm{lb} \quad a=14 \mathrm{ft} \quad b=2 \mathrm{ft} \quad \theta=30 \mathrm{deg} \quad M=20 \times 10^{3} \mathrm{lb} \mathrm{ft}$

Problem 15

The force \mathbf{F} acts at the end of the beam. Determine the moment of the force about point A. a) By vector method, b) By scalar method.

F:[600,300,-600] N
$a=1.2 \mathrm{~m} \quad b=0.2 \mathrm{~m} \quad c=0.4 \mathrm{~m}$

Problem 16

The force \mathbf{F} creates a moment about point O of \mathbf{M}_{O}. If the force passes through a point having the given x coordinate, determine the y and z coordinates of the point. Also, realizing that $M_{O}=F d$, determine the perpendicular distance \boldsymbol{d} from point \boldsymbol{O} to the line of action of \mathbf{F}.

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \times \mathbf{F}=\mathbf{M}_{\mathbf{O}} \quad\binom{y}{z}=\operatorname{Find}(y, z) \quad\binom{y}{z}=\binom{1}{3} \mathrm{~m} \\
& d=\frac{\left|\mathbf{M}_{\mathbf{O}}\right|}{|\mathbf{F}|} \quad d=1.149 \mathrm{~m}
\end{aligned}
$$

$\mathbf{F}:[6,8,10] \mathrm{N} \quad \mathbf{M}_{\mathbf{0}}:[-14,8,2] \mathrm{Nm}, \quad x=1 \mathrm{~m}$

Problem 17

The force \mathbf{F} is applied to the handle of the box wrench. Determine the component of the moment of this force about the z axis which is effective in loosening the bolt.

Problem 18

The lug nut on the wheel of the automobile is to be removed using the wrench and applying the vertical force \mathbf{F}. Assume that the cheater pipe $A B$ is slipped over the handle of the wrench and the \mathbf{F} force can be applied at any point and in any direction on the assembly. Determine if this force is adequate, provided a torque M about the x-axis is initially required to turn the nut.
Given:

Problem 19

Two couples act on the beam. Determine the magnitude of \mathbf{F} so that the resultant couple moment is M counterclockwise. Where on the beam does the resultant couple moment act?

C. $\quad M_{R}=\Sigma M \quad M=F b \cos (\theta)+P a \quad F=\frac{M-P a}{b \cos (\theta)} \quad F=139 \mathrm{lb}$

The resultant couple moment is a free vector. It can act at any point on the beam.
$M=450 \mathrm{lb} \mathrm{ft} \quad P=200 \mathrm{lb} \quad a=1.5 \mathrm{ft} \quad b=1.25 \mathrm{ft} \quad c=2 \mathrm{ft} \quad \theta=30 \mathrm{deg}$

Problem 20
If the couple moment acting on the pipe has magnitude M, determine the magnitude F of the vertical force applied to each wrench.

Given:
$M=400 \mathrm{Nm} \quad a=300 \mathrm{~mm} \quad b=150 \mathrm{~mm} \quad c=400 \mathrm{~mm} \quad d=200 \mathrm{~mm} \quad e=200 \mathrm{~mm}$
Problem 21
Replace the force at A by an equivalent force and couple moment at point P.

$$
\begin{array}{ll}
\mathbf{F}=F\left(\begin{array}{c}
\sin (\theta) \\
-\cos (\theta) \\
0
\end{array}\right) & \mathbf{F}=\left(\begin{array}{c}
187.5 \\
-324.76 \\
0
\end{array}\right) \mathrm{N} \\
\mathbf{M}_{\mathbf{P}}=\left(\begin{array}{c}
-a-c \\
b-d \\
0
\end{array}\right) \times \mathbf{F} & \mathbf{M}_{\mathbf{P}}=\left(\begin{array}{c}
0 \\
0 \\
736.538
\end{array}\right) \mathrm{N} \cdot \mathrm{~m}
\end{array}
$$

Given: $F=375 \mathrm{~N} \quad a=2 \mathrm{~m} \quad b=4 \mathrm{~m} \quad c=2 \mathrm{~m} \quad d=1 \mathrm{~m} \quad \theta=30 \mathrm{deg}$
Problem 22
Replace the loading on the frame by a single resultant force. Specify where its line of action intersects member $A B$, measured from A.

Given: $\quad M=600 \mathrm{lb} \mathrm{ft}$ Solution:
$F_{R x}=-F_{4}$
$F_{R y}=-F_{1}-F_{2}-F_{3}$

$$
F_{R y}=-900 \mathrm{lb}
$$

$$
\begin{gathered}
F=\sqrt{F_{R x}^{2}+F_{R y}^{2}} \quad F_{\mathrm{R}}=922 \mathrm{lb} \quad \theta=\operatorname{atan}\left(\frac{F_{R y}}{F_{R x}}\right) \quad \theta=77.5 \mathrm{deg} \\
\Sigma \mathrm{M}_{\mathrm{D}}=(300)(3)-(400)(4)-(200)(2)+600=-500 \mathrm{Lb} . \mathrm{ft} \quad \sum \mathrm{M}_{\mathrm{D}}=\left(\mathrm{F}_{\mathrm{R}}\right)(\mathrm{d}) \quad \mathrm{d}=0.54 \mathrm{ft}
\end{gathered}
$$

